

Deciphering Potential Drug Targets in *Clostridium Perfringens* through Metabolic Pathway Analysis

M Arockiyajainmary, Sivashankari Selvarajan

Department of Bioinformatics, Nirmala College for Women, Coimbatore, Tamil Nadu, India

ABSTRACT

Background: In our day-to-day life, we are facing many dreadful diseases caused by many infectious pathogens. These pathogens invade the living organisms (host) and lethally damaging them. These dreadful pathogens were also be used as bioweapons. Among them, *Clostridium perfringens* is taken for the study. *Clostridium perfringens* is an anaerobic, rod shaped, gram positive bacteria capable of forming spores. It is prevalent in the environment and in the intestine of humans and other animals. It is the causative agent for a wide range of diseases including food borne diseases, gas gangrene and flesh eating disease called necrotizing fasciitis. *C. perfringens* is commonly found on raw meat and poultry that espouse to grow in conditions with very little or no oxygen, and under ideal conditions can multiply very rapidly. These conditions are occasionally lethal due to the substantial number of toxins such as alpha toxin, beta toxin, epsilon toxin and iota toxin produced by *C. perfringens*. It is significantly important to analyze the Drug targets of the pathogen in order to destroy them.

Objective: The present work aims in identifying potential drug targets in *C. perfringens* through metabolic pathway analysis.

Method: Primarily, the metabolic pathways of the host and pathogen are compared to identify unique pathways in the bacteria. Among the enzymes that catalyze unique metabolic pathways, the essential ones for the survival of the pathogen are identified. The druggability of the essential enzymes are predicted through identification of its sub cellular localization and other druggable parameters.

Results: The comparative metabolic pathway analysis result shows that, among the 98 metabolic pathways of *C.perfringens*, 25 pathways were unique that they did not have a counterpart with Human. There were 113 enzymes involved in these unique pathways. The NCBI's protein Blast search against human was done to identify the non-homologous proteins. There were 93 non-homologous proteins. Among the 93 non-homologous proteins, 47 proteins were found to be essential. Based on their sub-cellular localization, 32 proteins were identified as potential drug targets and 15 are probable vaccine candidates.

Conclusion: The present work which started with 25 different pathways with more than a hundred different enzymes, resulted in the identification of 32 putative drug targets against *C.perfringens* infection. All these 32 identified targets did not have any human homolog and are highly essential for the survival of the organism. They were concluded as potential drug targets. Designing of compounds to inhibit these enzymes would be successful for treating the life-threatening infections caused by this pathogen.

Keywords: Gas Gangrene, Necrotizing Fasciitis, Drug Discovery.

I. INTRODUCTION

Human microbes are crucial for human life, having significant impact of human physiology and health [3-5]. A wide range of microbial communities and microbiome exist throughout the human body, playing significant roles in human health and disease [7, 8 and 10]. We are in the peak time to protect ourselves and eradicate the life threatening pathogens. Clostridium perfringens is a major food borne pathogen. It is commonly known as cafeteria germ, since the risk places of its outbreak is in cafeterias, prison, and hospitals where large amount of food in advance. This provides ample prepared opportunity to contaminate food. C.perfringens is a causative agent of food poisoning, gas gangrene, and necrotizing fasciitis. Other symptomes of this illness include abdominal cramping, fever, vomiting, diahorrea which is often bloody and a distented bowel. It is found in human intestine, raw meat and poultry and in the incompletely food. It is a grampositive, rod shaped, non-motile, endospore forming, anaerobic bacteria. The spores and vegetative cells are relatively heat-resistance, facilitating its survival in incompletely cooked food. It has a doubling time of less than 10 minutes. The optimal temperature for its growth is 43-45°c. It produces two toxins that active in human gastrointestinal tract. The condition becomes lethal due to substantial production of various toxins such as alpha toxin, beta toxin, epsilon toxin, iota toxin, etc.

These spores and toxins are used as biowarfare agents. The spores are incorporated into weapons which cause traumatic injury which leads to the delivery of spores deep into tissues would results in the development of gas gangrene. *C.perfringens* is one of the leading cause of food poisoning. CDC estimates it causes nearly 1 million cases of foodborne illness each year [6]. Contaminated meat in stews, soups and gravies are usually responsible for outbreak. About 250,000 cases were reported in United States every

year. Gas gangrene is a clostridial myonecrosis that produces gas in tissues which leads to death and decomposition of body tissue. About 1000 cases occurs yearly. Nectrotizing fasciitis is a flesh-eating disease results in death of body's soft tissue under the skin and spreads rapidly. Symptoms include red or purple skin in affected area. It occurs in 650-800 people every year. This foodborne necrotic fasciitis still occurs in several regions of Southeast Asia.

The reason for studying this microbe is, since it causes these life threatening infections it provokes our interest to identify the potential drug targets of *Clostridium perfringens* through *in silico* metabolic pathway analysis.

II. TOOLS AND DATABASES

With the advancements in the field of complete genome sequencing and computational approaches development have lead to metabolic pathway analysis. Various computational biology tools and databases were adopted for the study.

2.1. KEGG database

Kyoto Encyclopedia for Genes and Genomes, KEGG is employed for the representation and analysis of molecular networks involving diseases and drugs [9]. accessed It be can at http://www.genome.jp/kegg/pathway.html. KEGG PATHWAY database is a collection of pathway maps the molecular interactions, which represents reactions and relations. It also contains pathway maps for the molecular systems in both normal and pertubed states.

2.2. UniProt database

Uniprot is an expertly curated protein database, whch supports the biological research by providing a freely accessible, stable, comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and querying interfaces [16]. It can be accessed at <u>http://www.uniprot.org/</u>.

2.3. BlastP

BLAST is an acronym for Basic Local Alignment Search Tool, and is the name given to a suite of tools for identifying imperfect matches between a given query sequence and a database of sequences [1]. It uses the algorithm of Altschul et al. to search for similarities between a query sequence and all the sequences in a database. Blast is also a general name for a group of programs. Furthermore, blast can be run for protein searches as well as nucleotide ones. The program input is a biological sequence, it is also called the query sequence and it is compared to every database sequences. Among the different types of BLAST, BLAST-P is used for the study. The protein aminoacids query was searched against all the protein databases. It be accessed can at https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Protei <u>ns</u>.

2.4. DEG database

Zhang *et al* (2004) have constructed a Database of Essential Genes (DEG), which contains all the essential genes that are currently available [19]. It can be accessed at <u>http://www.essentialgene.org/</u>. Essential genes are genes that are indispensable to support cellular life. Users can BLAST the query sequences against DEG. If homologous genes are found, it is possible that the queried genes are also essential. Users can search for essential genes by their function or name. Users can also browse and extract all the records in DEG. Essential gene products comprise excellent targets for antibacterial drugs.

2.5. Cello V.2.5 tool

Cello V.2.5 tool is used to study the localization of proteins in the subcellular [18]. CELLO uses 4 types of sequence coding schemes: the amino acid composition, the di-peptide composition, the

partitioned amino acid composition and the sequence composition based on the physico-chemical properties of amino acids. It can be accessed at <u>http://cello.life.nctu.edu.tw/</u>.

2.6. Drugbank database

DrugBank is a freely available web-enabled database which can be accessed at <u>https://www.drugbank.ca</u>, that combines detailed drug data with comprehensive drug-target and drug-action information [17]. It was specifically designed to facilitate *in silico* drug-target discovery, drug design, drug-metabolism prediction, drug-interaction prediction, and general pharmaceutical education.

III. METHODS AND MATERIAL

Figure 3.1 Methodology flowchart

3.1. Analysis of host and pathogen metabolic pathways:

The present study focuses on *in silico* based comparative metabolic pathway analysis. Whole genome-wide metabolic pathway analysis of host (*Homo sapiens*) and pathogen (*C.perfringens*) was

performed through KEGG (Kyto Encyclopedia of Genes and Genomes) PATHWAY database. The metabolic pathway information of the host and the pathogen were extracted. The metabolic network pathway consists of molecular interactions, reactions and the enzymes/proteins involved in that pathway.

3.2. Identification of unique metabolic pathways and non-homologous proteins:

Initially, the metabolic pathways of Human and *C.perfringens* were retrieved. A manual sorting and comparison was then performed. The pathways that were not present in the host but present in the pathogen were identified as 'Unique pathways'. The enzymes/proteins involved in these unique pathways were retrieved from UniProt database. They were subjected to NCBI's Protein BLAST search. The BLASTP search was done against the non-redundant protein databases restricted to *Homo sapiens* subset and the e-value threshold cutoff was set to 0.005 to remove homologous sequence. The non-homologous proteins were identified. This provides a way to study the host-pathogen interaction. These proteins were selected for further study.

3.3. Finding Essential genes:

Then, the essentiality of the proteins was checked, where these proteins contribute to the growth and survival of the organism. The essentiality is studied by comparing these non-homologous protein against DEG (Database of Essential Genes) using BlastP search available specifically for prokaryotic organism. This allows us to predict the potential drug targets among large number of non-homologous proteins involved in the unique metabolic pathway.

3.4. Testing the druggability:

Here we present a stradegy to prioritize pathogen proteins based on whether their properties meet criteria is considered as desirable drug target. The most important criteria in determining the therapeutic targets are (i) localization and toxicity (ii) presence or absence of transmembrane. And so, the subcellular location of the essential proteins were found using Cello V.2.5 tool. Cello V.2.5 is a publicly available, web-based system. The proteins which were located in cytoplasm and inner membrane were considered as drug targets and those which were located in surface membrane, periplasmic and extracellular were considered as vaccine candidates.

Additionally, experimentally and computationally solved 3D structures were detected by searching the Protein Data Bank (PDB).

IV. RESULTS AND DISCUSSION

The metabolic pathways of *Clostridium perfringens* and Homo sapiens were analysed through KEGG database. The comparative metabolic pathway analysis results shows that, among the 98 metabolic pathways of C.perfringens, 25 pathways were unique that they did not have a counterpart with Human. There were 113 enzymes involved in these unique pathways. The NCBI's protein Blast search against human was done to identify the non-homologous proteins. There were 93 non-homologous proteins. They did not show any similarity with the human proteins. The Table-1 shows the enzymes involved in the unique pathways, the protein Blast results shows whether it is a human homolog or not. The DEG results shows whether it is a essential gene or not. Among the 93 non-homologous proteins, 47 proteins were found to be essential. These proteins/enzymes plays a role in pathogenicity which can be concluded as potential targets. The Table-2 shows the subcellular location of essential proteins and its target priotization. Based on their sub-cellular localization, 32 proteins were identified as potential drug targets and 15 are probable vaccine candidates. The drug bank search for the organism, resulted in two proteins namely, pencillin binding protein A and Choloylglycine hydrolase.

V. CONCLUSION

With the advancements in the field of computational approaches, the metabolic pathways of Clostridium perfringens and Homo sapiens were analysed and the potential drug targets of *C.perfringens* were identified. The present work which started with 25 different pathways with more than a hundred different enzymes, resulted in the identification of 32 putative drug targets against *C.perfringens* infection. All these 32 identified targets did not have any human homolog and are highly essential for the survival of the organism. They were concluded as potential drug targets. Designing of compounds to inhibit these enzymes would be successful for treating the life threatening infections caused by this pathogen. Further, the three dimensional structure for the identified drug targets are not available in Protein Databank, experimental procedures to identify the structure of the targets will be of prime importance infections to treat caused by C.perfringens.

VI. REFERENCES

- Altschul F, Gish W, Miller W, Myers E and Lipman D, (1990), Basic local alignment search tool, Journal of Molecular Biology volume 21, Issue 3, 5 October 1990, Pages 403-410.
- [2]. Backhed F, Ley RE, Sonnenburg JL, *et al.* Host-Bacterial Mutualism in the Human Intestine. Science 2005; 307(5717): 1915-20.
- [3]. Baharak Khoshkholgh-Sima, Soroush Sardari, Jalal Izadi Mobarakeh, Ramezan Ali Khavari-Nejad, (2011), An in Silico Approach for Prioritizing Drug Targets in Metabolic Pathway of Mycobacterium Tuberculosis, International Journal of Pharmacological and Pharmaceutical Sciences Vol:5, No:11, 2011

- [4]. Cho I, Blaser MJ. The human microbiome: at the interface of
- [5]. Clemente JC, Ursell LK, Parfrey LW, *et al.* The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell 2012; 148(6): 1258-70.
- [6]. "*Clostridium perfringens*", Center for Disease Control and Prevention. 2015-10-08. Retrieved 2016-09-27.
- [7]. Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, et al. (2010) Identification of Attractive Drug Targets in Neglected-Disease Pathogens Using an In Silico Approach. PLoS Negl Trop Dis 4(8): e804. doi:10.1371/journal.pntd.0000804.
- [8]. health and disease. Nat Rev Genet 2012; 13(4): 260-70.
- [9]. Kanehisa M, Goto S, Furumichi M, Tanabe M and Hirakawa M, (2010), KEGG for representation and analysis of molecular networks involving diseases and drugs, *Nucleic Acids Research*, Volume 38, Issue suppl_1, 1 January 2010, Pages D355-D360, https://doi.org/10.1093/nar/gkp896.
- [10]. Methe BA, Nelson KE, Pop M, et al. A framework for human microbiome research. Nature 2012; 486(7402): 215-21.
- [11]. Mitra K, Carvunis A, Ramesh SK, *et al.* Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 2013; 14(10): 719-32.
- [12]. Morgan XC, Tickle TL, Sokol H, *et al.* Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012; 13(9): 1-18.
- [13]. Morya VK, Dewaker V, Mecarty SD, Singh R (2010) In silico Analysis Metabolic Pathways for Identifi cation of Putative Drug Targets for Staphylococcus aureus. J Comput Sci Syst Biol 3: 062-069. doi:10.4172/jcsb.1000058.
- [14].Sharma O P and Kumar M S, (2016), Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of

FiloBase-a comprehensive drug target database for Lymphatic filariasis, Scientific reports, Published: 25 January 2016

- [15]. Soen Y. Environmental disruption of hostmicrobe co-adaptation as a potential driving force in evolution. Front Genet 2014; 5(5528): 168.
- [16]. The UniProt Consortium, (2011), gkr981 Reorganizing the protein space at the Universal Protein Resource (UniProt), Nucleic Acids Research, Vol. 40, Database issue D71–D75 doi:10.1093/nar/.
- [17]. Wishart DS, (2008), DrugBank and its relevance to pharmacogenomics, Pharmacogenomics, Vol.
 9.No. 8special report, Published Online:5 Aug 2008, <u>https://doi.org/10.2217/14622416.9.8.1155</u>.
- [18]. Yu CS, Lin CJ and Hwang JK, (2004), Predicting subcellular localization of proteins for Gramnegative bacteria by support vector machines

based on n-peptide compositions, Protein Science 2004, 13:1402-1406.

 [19]. Zhang R, Ou1H and Zhang1 C, (2004), DEG: a database of essential genes, *Nucleic Acids Research,* Vol. 32, Database issue D271±D272 DOI: 10.1093/nar/gkh024.

Cite this article as :

M Arockiyajainmary, Sivashankari Selvarajan, "Deciphering Potential Drug Targets in Clostridium Perfringens through Metabolic Pathway Analysis", International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 6 Issue 1, pp. 432-437, January-February 2019. Available at doi : https://doi.org/10.32628/IJSRST196163 Journal URL : http://ijsrst.com/IJSRST196163

S.	Gene	Uniprot ID	Protein Name	Human	Essentiali
No	Name			Homolo	ty
				g	
	3. Bacter	ial chemotaxis	(cpe02030)		
28.	RbsB	Q8XJX5	Probable ribose ABC transporter	NO	NO
29.	MglB	Q8XKQ3	Probable galactoside ABC transporter	NO	YES
	4. Quoru	m sensing(cpe)2024)		
30.	LuxS	Q9XDU6	S-ribosylhomocysteine lyase	NO	NO
31.	Hfq	Q8XL84	RNA-binding protein	NO	NO
32.	GadC	Q8XIQ4	Probable glutamate gamma-	NO	NO
			aminobutyrate antiporter		
33.	GadA/B	Q8XIQ6	Glutamate decarboxylase	YES	-
34.	CcfA	Q8XH28	Membrane protein insertase	NO	YES
35.	FsrD	Q8XM19	Putative AgrB-like protein 1	NO	NO
36.	transporter	Q8XKX3	Probable spermidine/putrescine-binding	NO	NO
			protein 1		
37.	ToxE	Q8XMX2	Riboflavin biosynthesis protein	NO	YES
38.	ToxF	Q8XH76	Uncharacterized protein	NO	NO

Table 1: Proteins Involved in Unique Pathways of Clostridium perfringens

	5. Two-0	component syste	m(cpe02020)		
39.	PhoR	Q8XJJ9	Two-component sensor histidine kinase	NO	YES
40.	PhoP Q8XMP6		Two-component response regulator	NO	YES
41.	PtsS	Q8XMQ2	Probable phosphate ABC transporter	NO	YES
42.	HtrA	Q8XI91	Probable serine proteinase Do	YES	-
43.	DnaA	Q8XPG2	Chromosomal replication initiator	NO	YES
			protein		
44.	GlnA	Q8XHB6	Probable glutamine synthetase	NO	YES
45.	AtoB	Q8XIC6	Acetyl-CoA acetyltransferase	YES	-
46.	RPoN	Q8XKT7	RNA polymerase sigma factor sigma54	NO	YES
47.	PilA	Q8XI37	Uncharacterized protein	NO	NO
48.	MprF	Q8XKZ5	Phosphatidylglycerol lysyltransferase	NO	YES
			(Also involved in Cationic		
			antimicrobial peptide		
			resistance(cpe01503) pathway)		
49.	VanY	Q8XKL5	Probable D-alanyl-D-alanine	NO	NO
			carboxypeptidase		
			(Also involved in Vancomycin		
			resistance(cpe01502))		
50.	Spo0A	Q8XJE7	Phosphorylation-activated transcription	NO	NO
			factor		
51.	cit C	Q8XL96	[Citrate [pro-3S]-lyase] ligase	NO	NO
52.	cit D	Q8XL95	Citrate lyase acyl carrier protein	NO	NO
53.	cit E	Q8XL94	Citrate lyase beta subunit	NO	YES
54.	cit F	Q8XL93	Citrate lyase alpha chain	NO	YES
55.	cit X	Q8XL92	Probable CitG protein	NO	NO
56.	cit G	Q8XL97	Probable 2-(5"-triphosphoribosyl)-3'-	NO	NO
			dephosphocoenzyme-A synthase		
57.	MaeA	Q8XL91	Probable malate oxidoreductase	YES	-
58.	AgrB/B1	Q8XM19	Putative AgrB-like protein 1	NO	NO
59.	YesM	Q8XMW4	Histidine kinase	NO	NO
60.	YesN	Q8XIM8	Two-component response regulator	NO	NO
	6. Cation	nic antimicrobia	l peptide resistance(cpe01503)		
61.	amiA/C	Q8XP50	Probable N-acetylmuramoyl-L-alanine	NO	NO
			amidase		
62.	degP	Q8XI91	Probable serine proteinase Do	YES	-
	7. Vanco	omycin resistanc	ce(cpe01502)		I
62	D4I	09VM71	Delening Delening lizzage D (Ala-	NO	VES
103.		υολινι/Ι	D-alamineD-alamine ligase D (Also	INU	IES

			involved in Peptidoglycan		
			biosynthesis(cpe00550) pathway)		
64.	Alr	Q8XM22	Alanine racemase	NO	YES
65.	65. MurF Q8XJA0		UDP-N-acetylmuramoyl-tripeptideD-	NO	YES
			alanyl-D-alanine ligase (Also involved in		
			Peptidoglycan biosynthesis(cpe00550)		
			pathway)		
66.	MarY	Q8XJA1	Phospho-N-acetylmuramoyl-	NO	YES
			pentapeptide-transferase (Also involved		
			in Peptidoglycan biosynthesis(cpe00550)	in Peptidoglycan biosynthesis(cpe00550)	
			pathway)		
67.	MurG	Q8XIQ1	UDP-N-acetylglucosamineN-	NO	YES
			acetylmuramyl-(pentapeptide)	l	
			pyrophosphoryl-undecaprenol N-	l	
			acetylglucosamine transferase (Also	l	
			involved in Peptidoglycan	l	
			biosynthesis(cpe00550) pathway)	l	
	8. Beta-	lactum resistan	ce(cpe01501)		
68.	NagZ	Q8XP12	Probable beta-hexosamidase A	NO	NO
69.	BlaZ	Q8XL58	Probable beta-lactamase	NO	NO
70.	PBP 1a/2	Q8XJ01	Penicillin-binding protein 1A (also	NO	YES
		-	involved in Peptidoglycan	l	
			biosynthesis(cpe00550) pathway)	l	
71.	PBP 2	Q8XIH9	Probable penicillin-binding protein 2	NO	YES
	9. Deger	adation of Aro	matic aminoacids(cpe01220)		
72	1111	08XN89	Alcohol dehydrogenase	NO	VES
12.	1.1.1.1	20/11/05	(Also involved in Chloroalkane and	110	1 LD
			chloroalkane degradation(cpe00625)	l	
			nathway and Nanthalene	l	
			degradation(cpe00626) pathway)	l	
	10.Meth	ane metabolisr	n(cpe00680)		
72	27111	OVVNU2	ATD dependent 6 phosphofmatokingga 1	VES	
73.	2.7.1.11	QOANTZ	Dibudrowwoootona kinasa	VES	
74.	4 1 2 12	QOAPOJ OSVD70	Emistere 1.6 bisphasphate aldelase	IES NO	
13. 74	4.1.2.13	QOAL 12	D 2 phoenhoglycerate debudre server	NU	
/0.	1.1.1.95	QOAPBI	D-5-phosphogrycerate denydrogenase	IES	
//.	5.4.2.12	Q8XP82	Probable phosphoglycerate mutase	NU	
/8.	2.1.2.1	Q8XJ32	Serine nydroxymethyltransferase	YES	-
/9.	4.2.1.11	Q8XKU4	Enolase	YES	-

80.	2.3.1.8	Q8XJN1	Phosphate acetyltransferasNOYES		YES				
81.	2.7.2.1	Q8XNW5	Acetate kinase 1 NO		YES				
82.	1.2.7.4	I1SBA8	Nitrate reductase electron transfer	NO	NO				
			subunit						
83.	3.1.3.71	Q8XHC9	Probable 2-phosphosulfolactate	NO	NO				
			phosphatase						
	11.Seco	ndary bile aci	d(cpe00121)						
84.	3.5.1.24	P54965	Choloylglycine hydrolase	NO	NO				
	12. Monobactam biosynthesis(cpe00261)								
85.	2.7.2.4	Q8XJS6	Aspartokinase	NO	YES				
86.	1.2.1.11	Q8XJ57	Aspartate-semialdehyde dehydrogenase	NO	YES				
07	4227	09V156	4 hydrony totrohydrodini oplingto	VEC					
87.	4.3.3.7	Q8XJ50	4-nydroxy-tetranydrodipicolinate	YES	-				
00	1 17 1 0	09V155	4 hydrowy tetrohydrodinicalinete	NO	VES				
00.	1.17.1.8	QOAJSS	4-hydroxy-tetranydrodipiconnate	NO	IES				
	12 Con	hananan hiagi	Inductase						
80	13.Car	Oovu A6	Clutomata 5 kinasa	VEC					
09. 00	2.7.2.11		Commo glutomyl phosphoto raduotosa	1 ES VES	-				
90.	90. 1.2.1.41 Q8XHA/ Gamma-glutamyl phosphate reductase YES								
01	14.Dell2		Data hudrowshuturul Ca A	VEC					
91.	1.1.1.157	Q8X127	dehudrogenese NAD dependent	IES	-				
02	2210	OWICE	A setul Co A sectulture of areas	VEC					
92.	2.3.1.9	Q8XIC0	Acetyl-CoA acetyltransierase	IES	-				
15. Cyanoaminoacid metabolism (cpe00460)									
93.	2.1.2.1	Q8AJ32	Serine hydroxymethyltransierase	IES	-				
94.	6.3.1.1	Q8XIY5	Aspartateammonia ligase	NO	YES				
95.	3.5.1.1	Q8XJK4	L-asparaginase	NO	YES				
	16.Stre	ptomycin bios	synthesis(cpe00521)						
96.	2.7.1.2	Q8XP84	Probable glucose kinase	YES	-				
97.	5.4.2.2	Q8XJ88	Probable phosphomannomutase	YES	-				
98.	2.7.7.24	Q8XMS2	Glucose-1-phosphate	NO	YES				
			thymidylyltransferase						
			(Also involved in Acarbose and						
			validamycin biosynthesis(cpe00525)						
			pathway and Polyketide sugarunit						
			biosynthesis(cpe00523) pathway)						
99.	4.2.1.46	Q8XMR9	dTDP-glucose 4,6-dehydratase (Also	YES	-				
			involved in Polyketide sugarunit						
			biosynthesis(cpe00523) pathway and						
			Acarbose and validamycin						
			biosynthesis(cpe00525) pathway)						

100	5.1.3.13	Q8XMS1	dTDP-4-dehydrorhamnose 3,5-epimerase	NO	YES
•			biosynthesis(cpe00523)pathway)		
101	1.1.1.18	Q8XP75	Probable dehydrogenase	NO	NO
102	1.1.1.133	Q8XMS0	dTDP-4-dehydrorhamnose reductase	NO	NO
			(Also involved in Polyketide sugarunit		
			biosynthesis(cpe00523) pathway)		
	17.Acar	bose and valie	lamycin biosynthesis(cpe00525)		
	18.Pept	idoglycan bios	synthesis(cpe00550)		
103	2.5.1.7	Q8XID7	UDP-N-acetylglucosamine 1-	NO	YES
			carboxyvinyltransferase 1		
104	1.3.1.98	Q8XNI0	UDP-N-acetylenolpyruvoylglucosamine	NO	YES
			reductase		
105	6.3.2.8	Q8XHJ0	UDP-N-acetylmuramateL-alanine	NO	YES
			ligase		
106	6.3.2.9	Q8XHM4	UDP-N-acetylmuramoylalanineD-	NO YES	
			glutamate ligase		
107	6.3.2.13	Q8XJ99	UDP-N-acetylmuramoyl-L-alanyl-D-	NO	YES
			glutamate2,6-diaminopimelate ligase		
108	3.6.1.27	Q8XM93	Uncharacterized protein	NO	NO
109	LMWPB	Q8XJF8	D-alanyl-D-alanine carboxypeptidase	NO	NO
	Е		5 51 1		
	19.Chlo	roalkane and o	chloroalkane degradation(cpe00625)	<u> </u>	
110	1.2.1.3	Q8XI14	Aldehyde dehydrogenase	YES	-
111	3.8.1.2	Q8XMC7	Uncharacterized protein	YES	-
			-		
	20.Napth	alene degrada	ation(cpe00626)	-	
	21.Polyk	etide sugaruni	it biosynthesis(cpe00523)		
	22.Penic	illin and cepha	losporin biosynthesis(cpe00311)		
112	3.5.2.6	Q8XL58	Probable beta-lactamase	NO	NO
113	3.1.1.41	Q8XK07	Probable acetylxylan esterase	NO NO	

S.	Gene	Uniprot	Protein name	Subcellula	Trans	Candidate
No	name	ID		r	membrane	
				Location		
1.	Sec	Q8XJ20	Protein-export membrane	Membrane	Transmembran	Vaccine
	D/F		protein		e	Target
2.	Sec E	Q8XHR2	Protein translocase subunit	Cytoplasm	-	Drug Target
3.	Sec Y	Q8XHU3	Protein translocase subunit	Membrane	Transmembran	Vaccine
					e	Target
4.	YidC	Q8XH28	Membrane protein	Membrane	Transmembran	Vaccine
			insertase		e	Target
5.	Sec A	Q8XIF0	Protein translocase subunit	Cytoplasm	-	Drug Target
6.	pts I	Q8XHW	Phosphoenolpyruvate-	Cytoplasm	-	Drug Target
		9	protein phosphotransferase			
7.	FruA/B	Q8XMV	PTS system	Membrane	Transmembran	Vaccine
		4			e	Target
8.	Pts G	Q8XIG3	Probable PTS system	Membrane	Transmembran	Vaccine
					e	Target
9.	Nag E	Q8XP89	Probable PTS system	Membrane	Transmembran	Vaccine
			enzyme		e	Target
10.	MalT	Q8XNB9	Probable PTS system	Membrane	Transmembran	Vaccine
					e	Target
11.	GlyC/B	Q8XNY6	PTS arbutin-like enzyme	Membrane	Transmembran	Vaccine
			IIBC component		e	Target
12.	UlaA	Q8XN15	Uncharacterized protein	Membrane	Transmembran	Vaccine
					e	Target
13.	MglB	Q8XKQ3	Probable galactoside ABC	Membrane	Transmembran	Vaccine
	a a	0.011110.0	transporter		e T	Target
14.	CcfA	Q8XH28	Membrane protein	Membrane	Transmembran	Vaccine
1 =	— —	0.010 01	insertase		e	Target
15.	ToxE	Q8XMX	Riboflavin biosynthesis	Cytoplasm	-	Drug Target
16		2	protein			
10.	PhoR	Q8XJJ9	I wo-component sensor	Cytoplasm	-	Drug Target
17	DhoD	OOVMDC		Cutonloom		Drug Torget
1/.	Phop	Q8AMP0	regulator	Cytoplasm	-	Drug Target
10	DtoS	00000	Prohable phosphate APC	Mambrana	Extracellular	Vacaina
10.	PISS	QOANIQ	transporter	Memorane	Extracentular	Vaccine
10	Drad	$\frac{2}{0.0000000000000000000000000000000000$	Chromosomal raplication	Cutoplaam		Target
17.	DiiaA	QOAPU2	initiator protein	Cytopiasin	-	Drug Target
20	GlnA	087ND4	Probable clutamina	Cytoplasm		Drug Targat
20.	UIIA	QOVIDO	synthetase	Cytopiasiii	-	Drug Target

 TABLE - 2 : Target Prioritization based on Sub-cellular Localization

21.	RPoN	Q8XKT7	RNA polymerase sigma	Cytoplasm	-	Drug Target
			factor sigma54			
22.	MprF	Q8XKZ5	Phosphatidylglycerol	Membrane	Transmembran	Vaccine
			lysyltransferase		e	Target
23.	cit E	Q8XL94	Citrate lyase beta subunit	Cytoplasm	-	Drug Target
24.	cit F	Q8XL93	Citrate lyase alpha chain	Cytoplasm	-	Drug Target
25.	Ddl	Q8XM71	D-alanineD-alanine	Cytoplasm	-	Drug Target
			ligase B			
26.	Alr	Q8XM22	Alanine racemase	Cytoplasm	-	Drug Target
27.	MurF	Q8XJA0	UDP-N-acetylmuramoyl-	Cytoplasm	-	Drug Target
			tripeptideD-alanyl-D-			
			alanine ligase			
28.	MarY	Q8XJA1	Phospho-N-	Membrane	Transmembran	Vaccine
			acetylmuramoyl-		e	Target
			pentapeptide-transferase			
29.	MurG	Q8XIQ1	UDP-N-	Cytoplasm	-	Drug Target
			acetylglucosamineN-			
			acetylmuramyl-			
			(pentapeptide)			
			pyrophosphoryl-			
			undecaprenol N-			
			acetylglucosamine			
			transferase			
30.	PBP1a/	Q8XJ01	Penicillin-binding protein	Membrane	Transmembran	Vaccine
	2		1A		e	Target
31.	PBP 2	Q8XIH9	Probable penicillin-binding	Extracellul	-	Drug Target
			protein 2	ar		
32.	1.1.1.1	Q8XN89	Alcohol dehydrogenase	Cytoplasm	-	Drug Target
33.	4.1.2.1	Q8XP79	Fructose-1,6-bisphosphate	Cytoplasm	-	Drug Target
	3		aldolase			
34.	2.3.1.8	Q8XJN1	Phosphate acetyltransferase	Cytoplasm	-	Drug Target
35.	2.7.2.1	Q8XNW	Acetate kinase 1	Cytoplasm	-	Drug Target
		5				
36.	2.7.2.4	Q8XJS6	Aspartokinase	Cytoplasm	-	Drug Target
37.	1.2.1.1	Q8XJ57	Aspartate-semialdehyde	Cytoplasm	-	Drug Target
	1		dehydrogenase			
38.	1.17.1.	Q8XJ55	4-hydroxy-	Cytoplasm	-	Drug Target
	8		tetrahydrodipicolinate			
			reductase			
39.	6.3.1.1	Q8XIY5	Aspartateammonia ligase	Cytoplasm	-	Drug Target
40.	2.7.7.2	Q8XMS2	Glucose-1-phosphate	Cytoplasm	-	Drug Target
1		•		1		
	4		thymidylyltransferase			

41.	5.1.3.1	Q8XMS1	dTDP-4-dehydrorhamnose	Cytoplasm	-	Drug Target
	3	_	3,5-epimerase			
42.	2.5.1.7	Q8XID7	UDP-N-acetylglucosamine	Cytoplasm	-	Drug Target
			1-carboxyvinyltransferase			
			1			
43.	1.3.1.9	Q8XNI0	UDP-N-	Cytoplasm	-	Drug Target
	8		acetylenolpyruvoyl			
			glucosamine reductase			
44.	6.3.2.8	Q8XHJ0	UDP-N-acetylmuramate	Cytoplasm	-	Drug Target
			L-alanine ligase			
45.	6.3.2.9	Q8XHM	UDP-N-	Cytoplasm	-	Drug Target
		4	acetylmuramoylalanine			
			D-glutamate ligase			
46.	6.3.2.1	Q8XJ99	UDP-N-acetylmuramoyl-	Cytoplasm	-	Drug Target
	3		L-alanyl-D-glutamate2,6-			
			diaminopimelate ligase			
47.	3.5.1.1	Q8XJK4	L-asparaginase	Cytoplasm	-	Drug Target